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CONSERVATIVE QUANTITES OF FREE
PARTICLE IN THE INTERIOR
SCHWARZSCHILD SPACE-TIME

Y. A. Abd-Eltwab, M. A. Soliman, A. B. Shamardanand M. Abdelgaber.

Abstract—The interior Schwarzschildsolution of Einstein field equations in presence of matter is considered. The non zerochristoffel
symbols of such a solutions are obtained, these symbols are used to obtain some conservative quantities in some spaces in the geometry
of such a solutions. The Killing equations are solved in sub spaces of the interior Schwarzschild space time under some condition.

Index Terms— The Killing equations, conservative quantities, interior Schwarzschild solution,Schwarzschild.

1 Introduction
he necessary and sufficient condition for existence of

symmetry of space time relative to a vector field £* is

[1];

v + v = 0 (1.1)
Which can written in the form,

AT o«

S 2g ) =0 (1.2)

The interior Schwarzschild space-time metric is defined by
(2];
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where, R? = ﬁ , G is the gravitational constant, p and

I is the density and the radius of the hard body respec-
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tively. Besides we put ko = (

1
2

(1 = ;—)2 then, equation (1.3) becomes,

2

ds? = -k 2dr? —r2d6? —r%sin?0 de? +

(ko - %k)2 2 de?. (1.4)

The covariant and contravariant metric tensors of equa-
tion (1.4) are,
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(1.5)
and
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Using coordinate transformations,
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o (1.7)
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2 Formulation of the problem and anal-
ysis

Using the interior Schwarzschild space-time metric, the
non zeroChristoffel symbols of second kind are,
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Substituting, the non zeroChristoffel symbols in equation
(1.2) we get,

0%

_1 + ﬁz = £, =0, (2.1)
0% GEz _

o +=>=+- E 0, (2.2)

Byl =, (2:3)
0z
g, 0 2X
* x2+§2<3J1—§ Jl 2 —1>
2 R2

(2.4)
B3 x2
6—;—x(1—§)zl=o, (2.5)
%+ ES+2coty £, =0, (2.6)
a
%— (1——)sm y& —sinycosy&, =0 (2.7)
and
ot x3+xﬁ2(3 1—;—2 1—%)—22—1>
% v ® £,=0. (2.8)
oT 4R

With the solution of Killing equations in case of exterior
Schwarzschild solution metric in mind [3]; we assume the
following situation by guessing we take the first compo-

nent of the killing vector equal zero,
&.=0. (2.9)

Substituting equation (2.9) in equations (2.1) — (2.) we
get,

0%, | 2

a_; + ;gz =0, (2.10)

%42 =0, (2.11)
08,

=t 4 £, =0, (2.12)
EASY ey

9% _

2 =0, (2.13)
" ‘933 +2coty & =0, (2.14)
a; —sinycosy &, =0 (2.15)
and
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5= 0. (2.16)
By guessing, we consider also;
&, =x"2(Q, cosz — Q sinz), (2.17)
€3 = x"2(Qq cosz + O, sinz) siny cosy (2.18)
and

-2
E4=ﬂ4[§\/ —}f—f—%\/l—;—z (2.19)

Equations (2.9), (2.17), (2.18) and (2.19) represent a so-
lution of the system (2.1) — (2.8) under the condition,

y="%, n=123, .. (2.20)
Using (1.6) in equations (2.9), (2.17),(2.18) and (2.19),

the contravariant components of killing vector £* are,

& =0, (2.21)
€2 = —x"*(Q, cosz — O, sinz), (2.22)
£ = —x"*(Q, cosz + Q, sinz) coty (2.23)
and
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where, 4, Q,, Qsand ,are arbitrary constants.

Existence of killing vector £%leads to existence of conserva-
tive quantities due to equation [4,5];

dxH
Mo8uy =< §(n) = Can) » (2.25)
whereCy) are arbitrary constants.

Forn=1,
d d dT
my (gzz d—ZE?m + 833 d—ZE?n + g44EE‘(L1)) = C(y (2.26)

Substituting equations(1.5),(2.21), (2.22), (2.23) and
(2.24) in (2.26) we get,
dy

_ i dz .
mox 2 (—Esmz +£smycosycos Z) = Cqy, (2.27)

Similarly, forn = 2 and n = 4 we get,

dy

myx 2 (E cosz+ %sinycos y COS Z) = C(p) (2.28)
and

-2
mo[% —%’—;—%\/1—;—2 3—:=C(4) ) (2.29)

forn = 3 there's no existence of any equation.

3 Conclusion

Under the condition (2.20) which represent a cone, the
corresponding conservative quantities in case of interior
(2.27) and (2.28)

which represent two component of the angular momen-

Schwarzschild metric are, equations

tum of free particle. One component of linear momentum
is conservative either which represented by equation
(2.29).
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